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Abstract
In this article, we study the homogenization of optimal control problems subject to
second-order semi-linear elliptic PDEs with matrix coefficients in two different types
of oscillating domains: a circular domain and a domain with general low-dimensional
oscillations. The cost functionals considered are of general energy typewith oscillating
matrix coefficients, and the coefficient matrix in the cost functional is allowed to
differ from the coefficient matrix in the constrained PDE. We prove well-defined
limit problems for both domains and obtain explicit forms for the limiting coefficient
matrices of the cost functionals and constrained PDEs. As expected, the coefficient
matrix of the limit cost functional is a combination of the original cost functional’s
and constrained PDE’s coefficient matrices.

Keywords Homogenization · Periodic unfolding · Oscillating boundary · Circular
oscillating domain
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1 Introduction

In this article, we plan to study the homogenization of a semi-linear elliptic PDE in a
circular oscillating domain of the form
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{
−div(Aε∇uε) + k(uε) + uε = f in Oε,

Aε∇uε · νε = 0 on ∂Oε.

Here Oε is the oscillating circular domain to be defined in Subsect. 2.1. The limit is
quite interesting (see (5)), and the main ingredient in the analysis is the Browder–
Minty method to deal with the non-linearity k together with the method of unfolding.
In addition to the homogenization, we also establish corrector results, andwe use these
corrector results to study an associated optimal control problem with a cost functional
of the form

Jε(u, θ) = 1

2

∫
Oε

Bε∇u∇u + β

2

∫
Oε

χω|θ |2.

Here note that the matrix Bε is different from the matrix Aε of the system discussed
above. In the second part of the article, we study homogenization of semi-linear PDE
on n dimensional oscillating boundary domains with oscillations in m directions,
1 ≤ m ≤ n − 1. For example (see Fig. 4), when n = 3, oscillations can be of pillar
type (m = 2) or slab type (m = 1). Finally, we study the optimal control problem also
in this domain with an energy type cost functional.

Mathematical findings from the field of optimal control posed for domains with
highly oscillating interfaces and boundaries can be used to bring insights into a large
class of complex mathematical models describing a large variety of physical phe-
nomena. Typical examples are flows through complex domains and materials with
highly functional interfaces. The list includes lubricating flows with rough contacts,
propagation of electromagnetic waves through the rough interface, flows in channels
with rough boundaries, airflow through compression systems in turbo-machines such
as jet engines, etc. The last scenario can be modeled by the viscous Moore–Greitzer
equation directly derived from scaled Navier–Stokes equations. Materials with oscil-
lating boundaries that have a designed macroscopic functionality are used in industrial
applications likemicrostrip radiators and nanotechnologies, fractal type constructions,
etc.; see e.g. [35, 39, 40]. It is not possible to give exhaustive literature here. However,
we present the relevant literature in view of the problems under study.

In the context of optimal control, homogenization can be used to simplify the opti-
mization problem by replacing the original, periodically structured system with an
equivalent, homogenized system. This can be useful when the original system is too
complex to be analyzed directly or when the periodicity of the system allows for sig-
nificant computational simplification. In this article, as discussed above, we examine
the homogenization of semi-linear optimal control problems in oscillating boundary
domains where the non-linearity appears in the constrained partial differential equa-
tion (PDE). The considered problems represent a significant generalization of the
results presented in previous articles [6, 45]. In [6], the authors considered an optimal
control problemwith a quadratic cost functional in an oscillating domain which is con-
strained by a second-order semi-linear elliptic PDE with a Laplacian as the principal
part. In [45], the authors investigated an optimal control problem with an energy-type
cost functional subject to a general second-order linear elliptic PDE with oscillating
coefficients in oscillating domains with a curved interface.
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There is a considerable body of literature on the homogenization of oscillating
boundary domains. References such as [2, 7, 16, 30, 32, 34] and their respective
sources provide extensive coverage in this area. Regarding the homogenization of opti-
mal control problems in oscillating domains, studies employing the periodic unfolding
operator to characterize the optimal control play a crucial role in the analysis. Notable
references include [1, 4, 5, 45, 46, 49, 50]. For further literature on the homogenization
of optimal control problems, one can refer to [24, 28, 29, 44, 47, 48] and the references
therein. Significant research has also been conducted in the field of homogenization
of controllability problems. References such as [19, 20, 25–27] and their respective
sources focus on the homogenization of approximate controllability and exact con-
trollability. In the recent article [27], a general approach is provided for obtaining
approximate controls for parabolic problems using periodic approximations.

Regarding the homogenizationof non-linear problems, a lot of literature is available.
In [31], authors provide an analysis of the asymptotic behavior of a monotone-type
operator with nonlinear Signorini boundary conditions. Additionally, the homogeniza-
tion of a nonlinear monotone problem in a locally periodic domain using the unfolding
method is studied in [8]. Another approach, the asymptotic expansion method, is
employed in [38] to investigate the homogenization of a nonlinear parabolic problem.
Regarding the homogenization of the semilinear optimal control problem, one inter-
esting work is [22], where the authors focused on the homogenization of semi-linear
optimal control and controllability problems in perforated domains. In the present
article, the analysis became different and interesting due to the type of oscillations
(refer to Figs. 1 and 4) and the nature of the cost functionals being considered. For
further reading on homogenization of non-linear problems, refer [13, 14, 33, 37].
The literature on the homogenization of non-linear optimal control problems is very
limited.

The main techniques used in this analysis are the unfolding operator and the mono-
tone operator technique. The periodic unfolding method, first introduced in [21], is
a powerful tool in the theory of homogenization. In [23], a modified version of this
method was used to homogenize problems in pillar-type oscillating domains. The
unfolding operator was further generalized to general periodic oscillating domains in
[3]. The unfolding operator is also very effectively used in the context of multi-scale
analysis in domains with small oscillating boundaries that is to say when homoge-
nization and dimension reduction may take place simultaneously. An adaptation of
unfolding for the thin/small oscillating was introduced in [17] to study the asymp-
totic behavior of viscous fluid flow through a slightly rough wall. Further, in [9], a
modified version of the unfolding operator was introduced for thin porous media.
Recently, several modified versions of unfolding operators are introduced depending
on the nature of oscillation in the thin domain; see [10–12, 42, 43] and references
therein. For more information on unfolding operators, see [18] and its references. The
monotone operator technique in homogenization can be found in [6, 36, 41] and their
references.

The layout of the article is as follows. Major contributions of this article are the
Theorems 1, 2, 5, 6, 7, and 9. Our goal is to homogenize the optimal control problem,
which requires homogenization and corrector results for the associated semi-linear
PDE. Theorems 1 and 2 prove the homogenization and corrector results in circu-
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lar oscillating domains. Using these theorems, we prove the homogenization of the
associated optimal control problem in Theorem 5. Theorems 6 and 7 establish the
homogenization and corrector results for the semi-linear PDE in (n−m)-dimensional
oscillating domains in rectangular coordinates. Using these theorems, we obtain the
homogenization results for the optimal control problem in Theorem 9 for (n − m)-
dimensional oscillating domains.

The rest of this work is organized as follows. In Sect. 2, we homogenize the consid-
ered PDE and its associated optimal control problem in the circular oscillating domain.
It is divided into several subsections. In Subsect. 2.1, we describe the domain and pro-
vide the necessary assumptions. The main tool for this section, the unfolding operator,
is introduced in Subsects. 2.2 and 2.3. The main homogenization and corrector results
for the considered semi-linear PDE without control are presented in Subsect. 2.4. The
homogenization of the optimal control problem associated with the semi-linear PDE
in the circular domain is studied in Subsect. 2.5.

In Sect. 3, we consider the homogenization of the considered PDE and its associ-
ated optimal control problem in the rectangular oscillating domain. It is divided into
several subsections. In Subsect. 3.1, we describe the domain and provide the neces-
sary assumptions. The main tool for this section, the unfolding operator, is introduced
in Subsect. 3.2. The main homogenization and corrector results for the considered
semi-linear PDE without control are presented in Subsect. 3.3. The homogenization
of the optimal control problem associated with the semi-linear PDE in the rectangular
domain is studied in Subsect. 3.4.

2 Homogenization in Circular Oscillating Domain

In this section, we investigate the homogenization of a semi-linear optimal problem in
a two-dimensional domain Oε that exhibits circular oscillations (as shown in Fig. 1).
The homogenization of such domains has been extensively examined in prior studies
(see [3, 4, 51, 52] for references).

2.1 Domain Description

Let 0 < r0 < r1 < r2 be real numbers, ε = 1
n , n ∈ N. Let 	 be a connected open

subset of R
2, which is contained in the annulus O+ = {(r , θ) : r0 < r < r1} with

Lipschitz boundary as shown in Fig. 2 which is our reference cell. Now define

O+
ε =

{
(r , θ) ∈ O+ :

(
r ,

{
θ

ε

}
2π

)
∈ 	

}
, O− = {(r , θ) : r1 < r < r2} ,

Oε = int
(
O+

ε ∪ O−
)

and O = int
(
O+ ∪ O−

)
,

whereO+
ε is the inner oscillating part,O− is the outer fixed part,Oε is the oscillating

domain and O is the limit domain (see Fig. 3). It is important to note that as per the
definition of Oε, the inner part O+

ε exhibits periodic oscillations. These oscillations
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Fig. 1 Circular domainOε

Fig. 2 Reference cell 	

r0

r1

r2

Fig. 3 Limit domain O

involve a periodic arrangement of the reference cell 	, which is scaled by ε in the θ

variable and arranged in the θ direction with a period of 2πε. Also �a, �b are inner
and outer boundaries ofO and �0 is the interface. Here

{
θ
ε

}
2π = θ

ε
−[

θ
2πε

]
2π , where

[·] and {·} denote the integer and fractional parts. For r ∈ (r0, r1), define

Y (r) = {θ ∈ [0, 2π ] : (r , θ) ∈ 	} .

We will make the following assumptions about the reference cell 	:
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1. The set Y (r) is connected for all r ∈ (r0, r1).
2. There exists ρ > 0 such that 0 < ρ ≤ |Y (r)| < 2π for all r ∈ (r0, r1) where

|Y (r)| denotes the Lebesgue measure on R.

For completeness, we will state the definition of the polar unfolding operator for Oε

and list its properties.

2.2 Polar Unfolding Operator

Since the oscillations in Oε occur in an angular direction, we will use unfolding
operators in polar coordinates to analyze them. Here, we will provide the definition
of the unfolding operator forO and its properties, without providing proof (for proof,
see [3]).

First, we will define the unfolded domain OU in which the unfolded function will
be defined. The unfolded domain OU is defined as follows:

OU = {(r , θ, τ ) | θ ∈ (0, 2π), r ∈ (r0, r1), τ ∈ Y (r)}.
Let G = {(r , τ ) | r ∈ (r0, r1), τ ∈ Y (r)}, then, we can write, OU = (0, 2π) × G. Let
φε : OU → O+

ε be defined as φε(r , θ, τ ) = (
r , ε

[
θ
ε

]
2π + ετ

)
. The ε-unfolding of a

function u : O+
ε → R is the function u ◦ φε : OU → R. The operator which maps

every function u : O+
ε → R to its ε-unfolding is called the unfolding operator. Let

the unfolding operator be denoted by T ε, that is,

T ε : {u : O+
ε → R} → {T ε(u) : OU → R}

is defined by

T ε(u)(r , θ, τ ) = u

(
r , ε

[
θ

ε

]
2π

+ ετ

)
,

where
[

θ
ε

]
2π denotes the integer part of θ

2πε
.

If U ⊂ R
2 containing O+

ε and u is a real valued function on U , T ε(u) will mean,
T ε acting on the restriction of u to O+

ε . Some important properties of the circular
unfolding operator are stated below. For each ε > 0,

1. T ε is linear. Further, if u, v : O+
ε → R, then, T ε(uv) = T ε(u)T ε(v).

2. Let u ∈ L1(O+
ε ). then, ∫

OU

T ε(u) = 2π
∫
O+

ε

u.

3. Let u ∈ L2(O+
ε ). Then, T εu ∈ L2(OU ) and ‖T εu‖L2(OU ) = √

2π‖u‖L2(O+
ε ).

4. Let u, ∂u
∂r , ∂u

∂θ
∈ L2(O+), Then, T εu, ∂

∂r T
εu and ∂

∂τ
T εu ∈ L2(OU ). Moreover,

∂

∂r
T εu = T ε ∂u

∂r
and

∂

∂τ
T εu = εT ε ∂u

∂θ
.
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5. Let u ∈ L2(O+
ε ).Then, T εu → u strongly in L2(OU ).More generally, let uε → u

strongly in L2(O+). Then, T εuε → u strongly in L2(OU ).

6. Let, for every ε, uε ∈ L2(O+
ε ) be such that T εuε⇀u weakly in L2(OU ). Then,

ũε⇀
1

2π

∫
Y (r)

u(r , θ, τ )dτ weakly in L2(O+),

where ũε denotes the extension by 0 of uε to O+.
7. Let, for every ε > 0, uε ∈ H1(O+

ε ) be such that T εuε⇀u and ∂
∂r T

εuε⇀
∂u
∂r weakly

in L2(OU ). Then,

ũε⇀
1

2π

∫
Y (r)

u dτ and
∂̃uε

∂r
⇀

1

2π

∫
Y (r)

∂u

∂r
dτ weakly in L2(O+).

2.3 Boundary Unfolding Operator

In order to obtain the interface conditions, it is necessary to employ the boundary
unfolding operator T ε

0 on �ε, which has been inspired by the pioneering work of
Daniel Onofrei, who introduced the boundary unfolding operator on a hyperplane in
[53]. For every ε > 0, let us denote the unfolded boundary of �ε by �U , defined by

�U = {(r1, θ, τ ) : θ ∈ (0, 2π) and τ ∈ Y (r1)}

Define the boundary unfolding operator T ε
0 : {u : �ε → R} → {T ε

0 (u) : �U → R}
as

T ε
0 (u)(r1, θ, τ ) = uε

(
r1, ε

[
θ
ε

]
2π + ετ

)
.

Note that T ε
0 (u) = T ε(u)|r=r1 . Boundary unfolding operator also has similar proper-

ties as those of unfolding operator.

2.4 Homogenization of a Semi-Linear Elliptic PDE

In this section,we establish the homogenization of a semi-linear elliptic PDE inOε .We
are not writing the measure while doing integration in the article. It is just for getting
the expressions in a simple form. If we are taking the functions in polar coordinates,
then the integration is with respect to the measure rdrdθ ; otherwise, it is with respect
to the usual Lebesgue Measure. When we are integrating over the unfolded domain,
it is convenient to consider the functions in polar coordinates.

Let A(r , θ) = [ai, j (r , θ)]2×2 be a 2 × 2 matrix where the entries ai j : O → R

are Caratheodory type functions, that is ai j for i, j = 1, 2 are measurable in r and
continuous in θ . We also assume that ai, j are 2π -periodic with respect to θ and A is
uniformly elliptic and bounded in O, that is, there exist constants α, β > 0 such that

〈A(r , θ)λ, λ〉 ≥ α|λ|2 and |A(r , θ)λ| ≤ β|λ|
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for all λ ∈ R
2 and a.e in O. Let k : R → R be a C2 real-valued function such that

0 < C1 ≤ k′(t) ≤ C2, k(0) = 0 and k′′ is bounded.

Define

Aε(r , θ) = [aε
i j (r , θ)]2×2 =

{
A

(
r , θ

ε

)
if (r , θ) ∈ O+,

A(r , θ) if (r , θ) ∈ O−.

Consider the following problem in the domain Oε:

{
−div(Aε∇uε) + k(uε) + uε = f in Oε,

Aε∇uε · νε = 0 on ∂Oε.
(1)

Here f ∈ L2(O) is a given function, νε is the outward normal vector on ∂Oε. The
variational form corresponding to (1) is given as: Find uε ∈ H1(Oε) such that∫

Oε

Aε∇uε∇v + k(uε)v + uεv =
∫
Oε

f v for all v ∈ H1(Oε). (2)

Since the oscillations are circular, to study the asymptotic behavior, we need to write
(2) in polar form as follows:

∫
O+

ε

(
Āε

[
∂uε

∂r
∂uε

∂θ

] [
∂v
∂r
∂v
∂θ

]
+ k(uε)v + uεv

)
+

∫
O−

A∇uε∇v + uεv =
∫
Oε

f v, (3)

for all v ∈ H1(Oε), with Āε = [āε
i j ]2×2 = Xt AεX , where

X =
[
cos θ − 1

r sin θ

sin θ 1
r cos θ

]
. (4)

Since Aε is coercive, thematrix Āε is also coercive. By properties of unfolding operator
(see Subsect. 2.2),

T ε( Āε) = T ε(Xt )T ε(Aε)T ε(X) = T ε(Xt )A(r , τ )T ε(X).

Then as ε → 0, it is easy to see the following strong convergence in L2(OU ),

T ε
(
Āε

) → Ā = [āi j ]2×2 := Xt A(r , τ )X .

For each ε > 0, we have the existence of unique uε ∈ H1(Oε) by the Browder–
Minty theorem (see [54]). We want to study the asymptotic behavior of uε as ε → 0.
Let us describe the limit problem.
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Limit problem: To define the solution of the homogenized variational form, we need
appropriate function spaces, which we will define now. For any function φ defined on
O, we may write φ = φ+χO+ + φ−χO− = (φ+, φ−) throughout this article. Define

V (O) =
{
ψ ∈ L2(O) : (x · ∇ψ) ∈ L2(O) and ψ ∈ H1(O−)

}
,

with the inner product

〈φ,ψ〉V (O) = 〈φ,ψ〉L2(O+) + 〈(x · ∇φ) , (x · ∇ψ)〉L2(O+) + 〈φ,ψ〉H1(O−) .

Note that since x is strictly away from the origin, V (O) is a Hilbert space. Now we
are in a position to define the limit problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div

(
a0 (x)

|x |2
(
x · ∇u+)

x

)
+ |Y (|x |)|(k(u+) + u+) = |Y (|x |)| f in O+,

−div
(
A∇u−) + u− = f in O−,

a0 (x)

|x |2
(
x · ∇u+)

x · ν = 0 on �a,

A∇u− · ν = 0 on �b,

u+ = u−,
a0 (x)

|x |2
(
x · ∇u+)

x · ν = A∇u− · ν on �0,

(5)

where the limit coefficient a0 is

a0(r , θ) =
∫
Y (r)

⎛
⎜⎜⎝ det(A(r , τ ))

A(r , τ )

[− sin(θ)

cos(θ)

] [− sin(θ)

cos(θ)

]
⎞
⎟⎟⎠ dτ.

The weak form of the limit problem (5) is given by: Find u = u+χO+ + u−χO− ∈
V (O) such that

∫
O+

a0 (x)

|x |2 (x · ∇u) (x · ∇φ) + |Y (|x |)|(k(u) + u)φ +
∫
O−

A∇u∇φ + (k(u) + u)φ

=
∫
O+

|Y (|x |)| f φ +
∫
O−

f φ, for all φ ∈ V (O).

(6)

Since A is coercive, a0 is strictly positive, and k ismonotone, it follows byBrowder–
Minty theorem, we have the existence and uniqueness of the solution to the variational
form (6) in V (O).
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Using the polar transformation r ∂
∂r u = (x · ∇u), we can write the polar form of

(6) as: Given f ∈ L2(O), find u ∈ V (O) such that

∫
O+

(
a0

∂u

∂r

∂φ

∂r
+ Y (r)(k(u) + u)φ

)
+

∫
O−

(A∇u∇φ + (k(u) + u)φ)

=
∫
O+

Y (r) f φ +
∫
O−

f φ, for all φ ∈ V (O).

(7)

We will now prove the main theorem of this section, which states that the system
(5) is the homogenized limit problem of (1). To do this, we will prove the convergence
of solutions in their respective polar forms.

Theorem 1 Let uε and u be the unique solutions of (3) and (7) respectively. Then, we
have the following convergences weakly in L2(O+)

ũε⇀|Y (r)|u,
∂̃uε

∂r
⇀|Y (r)|∂u

∂r
,

∂̃uε

∂θ
⇀

(
− 1

2π

∫
Y (r)

ā21
ā22

dτ

)
∂u

∂r

and k̃(uε)⇀|Y (r)|k(u).

And in H1(O−), we have

uε⇀u weakly in H1(O−).

Proof We are dividing the proof into several steps.
Step 1: (Convergences) Since ‖uε‖H1(Oε)

≤ ‖ f ‖L2(O), using the properties of

unfolding operator, we have {T ε(uε)},
{
T ε

(
∂uε

∂r

)}
and

{
T ε

(
∂uε

∂θ

)}
are bounded in

L2(OU ). Also {uε} is bounded in H1(O−). Hence fromweak compactness, there exist
u+, P1, P2, ζ ∈ L2(OU ) and u− ∈ H1(O−) such that

T εuε⇀u+, T ε

(
∂uε

∂r

)
⇀P1, T ε

(
∂uε

∂θ

)
⇀P2,

T ε(k(uε))⇀ζ weakly in L2(OU ) and

uε −→ u− weakly in H1(O−).

(8)

From the properties of unfolding, it is easy to see that

P1 = ∂u+

∂r
.

Using similar properties, we get

∂

∂τ
T ε(uε)⇀

∂u+

∂τ
weakly in L2(OU ).
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But

∂

∂τ
T ε(uε) = εT ε

(
∂uε

∂θ

)
→ 0 strongly in L2(OU ),

which implies u+ is independent of τ . To identify P2, choose φ ∈ D(O+), ψ ∈
C∞([0, 2π ]) as arbitrary and define φε as

φε(r , θ) = εφ(r , θ)ψ

({
θ

ε

})
.

Then

T ε(φε) = εT ε(φ)ψ(τ), T ε

(
∂φε

∂r

)
= εT ε

(
∂φ

∂r

)
ψ(τ) and

T ε

(
∂φε

∂θ

)
= εT ε

(
∂φ

∂r

)
+ T ε (φ)∇yψ(τ).

(9)

Use φε as a test function in (3) to get

∫
O+

ε

Aε∇uε∇φε + k(uε)φε + uεφε =
∫
O+

ε

f φε.

Apply the unfolding operator and passing to the limit using (8) and (9), we get

∫
OU

Ā

[
P1
P2

] [
0

φψ ′(τ )

]
=

∫
OU

(ā21P1 + ā22P2) φψ ′(τ ) = 0,

which implies

P2 = − ā21
ā22

P1 = − ā21
ā22

∂u+

∂r
.

Step 2: (Interface Condition) Now, we prove the trace u+ = u− on �0. By the
continuity of the trace operator and using properties of the unfolding operator, we get

∫
�0

u+φ = lim
ε→0

∫
�0

(
T ε (uε)

)∣∣
xn=0 T

ε
0 (φ) = lim

ε→0

∫
�0

(
T ε
0 (uε|O+)

)∣∣
xn=0 T

ε
0 (φ)

= lim
ε→0

∫
�0

(
T ε
0 (uε|O−)

)∣∣
xn=0 T

ε
0 (φ) =

∫
�0

u−φ

for any φ ∈ C∞
c (�0). Hence, we have u+ = u− on �0. Define

u = χO+u+ + χO−u−.

Since ∂u
∂r

+ ∈ L2(O+) and u− ∈ H1(O−), the interface condition gives u ∈ V (O).
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Step 3: (Evaluating ζ ) The calculation of ζ is a crucial aspect of this article that
requires delicate analysis. To perform the calculation, we will utilize the well-known
Browder–Minty method. Let φ ∈ C1(Ō). Consider the integral

Iε =
∫
O+

ε

Āε

[
∂uε

∂r − ∂φ
∂r

∂uε

∂θ
−

(
− āε

21
āε
22

)
∂u
∂r

] [
∂uε

∂r − ∂φ
∂r

∂uε

∂θ
−

(
− āε

21
āε
22

)
∂u
∂r

]

+
∫
O+

ε

(k(uε) − k(φ)(uε − φ)) + (uε − φ)2

+
∫
O−

A(∇uε − ∇φ)(∇uε − ∇φ) + (k(uε) − k(φ)(uε − φ)) + (uε − φ)2.

Expand and rearrange to get,

Iε =
∫
Oε

A∇uε∇uε + k(uε)uε + u2ε +
∫
O+

ε

− Āε

[
∂uε

∂r
∂uε

∂θ

] [
∂φ
∂r

− āε
21

āε
22

∂u
∂r

]

+
∫
O+

ε

− Āε

[
∂φ
∂r

− āε
21

āε
22

∂u
∂r

] [
∂uε

∂r
∂uε

∂θ

]
+

∫
O+

ε

Āε

[
∂φ
∂r

− āε
21

āε
22

∂u
∂r

] [
∂φ
∂r

− āε
21

āε
22

∂u
∂r

]

+
∫
Oε

−k(uε)φ − k(φ)uε + k(φ)φ − 2uεφ + φ2

+
∫
O−

−A∇uε∇φ − A∇φ∇uε + A∇φ∇φ − k(uε)φ − k(φ)uε + k(φ)φ − 2uεφ + φ2.

Now we have to pass the limit as ε → 0. Using (8) pass to the limit as ε → 0 in the
variational form (3) to get

∫
OU

f φ +
∫
O−

f φ =
∫
OU

Ā

[
∂u
∂r

− ā21
ā22

∂u
∂r

]
∇φ + ζφ + uφ +

∫
O−

A∇u∇φ + k(u)φ + uφ

=
∫
OU

(
det Ā

ā22

)
∂u

∂r

∂φ

∂r
+ ζφ + uφ +

∫
O−

A∇u∇φ + k(u)φ + uφ.

By density of C1(Ō) in V (O), the above equality holds for all φ ∈ V (O). Put φ = u,
we have

∫
OU

f u +
∫
O−

f u =
∫
OU

(
det Ā

ā22

)
∂u

∂r

∂u

∂r
+ ζu + u2 +

∫
O−

A∇u∇u + k(u)u + u2

=
∫
OU

Ā

[
∂u
∂r

− ā21
ā22

∂u
∂r

] [
∂u
∂r

− ā21
ā22

∂u
∂r

]
+ ζu + u2

+
∫
O−

A∇u∇u + k(u)u + u2.
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On the other hand using the energy equality, we get

lim
ε→0

∫
Oε

Aε∇uε∇uε + k(uε)uε + u2ε = lim
ε→0

∫
Oε

f uε =
∫
OU

f u +
∫
O−

f u

=
∫
OU

Ā

[
∂u
∂r

− ā21
ā22

∂u
∂r

] [
∂u
∂r

− ā21
ā22

∂u
∂r

]
+ ζu + u2 +

∫
O−

A∇u∇u + k(u)u + u2.

(10)

Now using (8) and (10), we get (re-ordered for convenience)

lim
ε→0

Iε =
∫
OU

Ā

[
∂u
∂r

− ā21
ā22

∂u
∂r

] [
∂u
∂r

− ā21
ā22

∂u
∂r

]
−

∫
OU

Ā

[
∂u
∂r

− ā21
ā22

∂u
∂r

] [
∂φ
∂r

− ā21
ā22

∂u
∂r

]

−
∫
OU

Ā

[
∂φ
∂r

− ā21
ā22

∂u
∂r

] [
∂u
∂r

− ā21
ā22

∂u
∂r

]
+

∫
OU

Ā

[
∂φ
∂r

− ā21
ā22

∂u
∂r

] [
∂φ
∂r

− ā21
ā22

∂u
∂r

]

+
∫
OU

ζu − ζφ − k(φ)u + k(φ)φ + u2 − 2uφ + φ2

+
∫
O−

A∇u∇u − A∇u∇φ − A∇φ∇u + A∇φ∇φ

+
∫
O−

k(u)u − k(u)φ − k(φ)u + k(φ)φ + u2 − 2uφ + φ2.

By performing proper factorization, we arrive at

lim
ε→0

Iε =
∫
OU

A

[
∂u
∂r − ∂φ

∂r
− ā21

ā22
∂u
∂r + ā21

ā22
∂u
∂r

] [
∂u
∂r − ∂φ

∂r
− ā21

ā22
∂u
∂r + ā21

ā22
∂u
∂r

]

+
∫
OU

(ζ − k(u))(u − φ) + (u − φ)2

+
∫
O−

A(∇u − ∇φ)(∇u − ∇φ) + (k(u) − k(φ))(u − φ) + (u − φ)2

=
∫
OU

ā11

(
∂u

∂r
− ∂φ

∂r

) (
∂u

∂r
− ∂φ

∂r

)
+ (ζ − k(φ))(u − φ) + (u − φ)2

+
∫
O−

A(∇u − ∇φ)(∇u − ∇φ) + (k(u) − k(φ))(u − φ) + (u − φ)2.

From the monotonicity of k, we have I ε ≥ 0 for all ε, which implies

lim
ε→0

Iε =
∫
OU

ā11

(
∂u

∂r
− ∂φ

∂r

) (
∂u

∂r
− ∂φ

∂r

)
+ (ζ − k(φ))(u − φ) + (u − φ)2

+
∫
O−

A(∇u − ∇φ)(∇u − ∇φ) + (k(u) − k(φ))(u − φ) + (u − φ)2 ≥ 0.
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The above inequality holds true for all φ ∈ V (O). At this stage, choose φ = u +
λψ,ψ ∈ V (O) , λ > 0 to get

∫
OU

λā11
∂ψ

∂r

∂ψ

∂r
+ (ζ − k(φ − λψ))ψ + λψ2

+
∫
O−

λA∇ψ∇ψ + (k(u) − k(u − λψ))ψ + λψ2 ≥ 0.

As λ → 0,

∫
OU

(ζ − k(u)) ψ ≥ 0 for all ψ ∈ V (O) .

Hence,

∫
Y (r)

ζdy = |Y (r)|k(u). (11)

Thus, we have evaluated all the unknowns in (8). Hence using properties of the unfold-
ing operator, we can deduce the following convergences weakly in L2(O+)

ũε⇀|Y (r)|u,
∂̃uε

∂r
⇀|Y (r)|∂u

∂r
,

∂̃uε

∂θ
⇀

(
− 1

2π

∫
Y (r)

ā21
ā22

dτ

)
∂u

∂r

and k̃(uε)⇀|Y (r)|k(u).

Hence we got the required convergence. Now we need to prove that u is actually the
solution of the limit problem (7).
Step 4: (Limit Problem) Use ψ ∈ C∞(Ō) as a test function in (3). Apply unfolding
operator and passing to the limit in (3) using (8), we obtain

∫
OU

Ā

[
∂u
∂r

− ā21
ā22

∂u
∂r

] [
∂ψ
∂r
∂ψ
∂θ

]
+ ζψ + uψ +

∫
O−

A∇u∇ψ + k(u)ψ + uψ

=
∫
OU

f ψ +
∫
O−

f ψ.

Simplify to get,

∫
OU

(
det Ā

ā22

)
∂u

∂r

∂ψ

∂r
+ ζψ + uψ +

∫
O−

A∇u∇ψ + k(u)ψ + uψ

=
∫
OU

f ψ +
∫
O−

f ψ.
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Average out using (11) and properties of the unfolding operator to get

∫
O+

a0
∂u

∂r

∂ψ

∂r
+ |Y (|x |)|k(u)ψ + uψ +

∫
O−

A∇u∇ψ + k(u)ψ + uψ

=
∫
O+

|Y (r)| f ψ +
∫
O−

f ψ,

where

a0 =
∫
Y (r)

(
det Ā

ā22

)
dτ =

∫
Y (r)

⎛
⎜⎜⎝ det(A(r , τ ))

A(r , τ )

[− sin(θ)

cos(θ)

] [− sin(θ)

cos(θ)

]
⎞
⎟⎟⎠ dτ.

By density of C∞(O), in V (O), we get that u satisfies the limit problem (7). Hence
the proof of Theorem 1 is done. ��

Aswe proceed, wewill prove the following corrector results (strong convergences),
which are crucial in proving homogenization of optimal control problems in next
section.

Theorem 2 Let uε and u be the unique solutions of (3) and (7) respectively. Then as
ε → 0, we have

‖uε − u‖L2(O+
ε ) +

∥∥∥∥∂uε

∂r
− ∂u

∂r

∥∥∥∥
L2(O+

ε )

+
∥∥∥∥∂uε

∂θ
+ āε

21

āε
22

∂u

∂r

∥∥∥∥
L2(O+

ε )

+‖uε − u‖H1(O−) → 0.

Proof Consider

Jε =
∫
O+

ε

Āε

[
∂uε

∂r − ∂u
∂r

∂uε

∂θ
−

(
− āε

21
āε
22

∂u
∂r

)] [
∂uε

∂r − ∂u
∂r

∂uε

∂θ
−

(
− āε

21
āε
22

∂u
∂r

)]

+
∫
O+

ε

(k(uε) − k(u)) (uε − u) + (uε − u)2

+
∫
O−

A(∇uε − ∇u)(∇uε − ∇u) + (k(uε) − k(u)) (uε − u) + (uε − u)2.

Expand and rearrange to get

Jε = J 1ε + J 2ε + J 3ε + J 4ε ,

where

J 1ε =
∫
Oε

Aε∇uε∇uε + k(uε)uε + u2ε,
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J 2ε =
∫
O+

ε

−A

[
∂uε

∂r
∂uε

∂θ

] [
∂u
∂r

− āε
21

āε
22

∂u
∂r

]
− A

[
∂u
∂r

− āε
21

āε
22

∂u
∂r

] [
∂uε

∂r
∂uε

∂θ

]
+ A

[
∂u
∂r

− āε
21

āε
22

∂u
∂r

] [
∂u
∂r

− āε
21

āε
22

∂u
∂r

]
,

J 3ε =
∫
O+

ε

−k(uε)u − k(u)uε + k(u)u − 2uεu + u2,

J 4ε =
∫
O−

−A∇uε∇u − A∇u∇uε + A∇u∇u − k(uε)u − k(u)uε + k(u)u − 2uεu + u2.

On applying the unfolding operator and passing to the limit as ε → 0, we get

lim
ε→0

J 2ε =
∫
OU

(
ā12

ā21
ā22

− ā11

)
∂u

∂r

∂u

∂r
=

∫
O+

−a0
∂u

∂r

∂u

∂r
,

lim
ε→0

J 3ε =
∫
OU

−ζu − u2 =
∫
O+

−|Y (r)|
(
k(u)u + u2

)
,

lim
ε→0

J 4ε =
∫
O−

−A∇u∇u − k(u)u − u2,

lim
ε→0

J 1ε = lim
ε→0

∫
Oε

A∇uε∇uε + k(uε)uε + u2ε

= lim
ε→0

∫
Oε

f uε =
∫
OU

f u +
∫
O−

f u

=
∫
O+

a0
∂u

∂r

∂u

∂r
+ |Y (r)|

(
k(u)u + u2

)
+

∫
O−

A∇u∇u + k(u)u + u2

= −
(
lim
ε→0

J ε
2 + lim

ε→0
J ε
3 + lim

ε→0
J ε
4

)
.

This implies that limε→0 Jε = 0. Then coercivity of A and monotonicity of k com-
pletes the proof of Theorem 2. ��

2.5 Homogenization of Optimal Control Problem

Here we are going to study an optimal control problem in Oε governed by a semi-
linear elliptic PDE described in the previous section. Let A(r , θ) = [ai, j (r , θ)]2×2
and B(r , θ) = [bi, j (r , θ)]2×2 be 2×2 symmetric matrices that are uniformly elliptic,
bounded and 2π -periodic with respect to the variable θ . Also, the entries ai j , bi j :
O → R are Caratheodory type functions that is measurable in r and continuous in θ .
Define

Aε(r , θ) = [aε
i j (r , θ)]2×2 =

{
A

(
r , θ

ε

)
if (r , θ) ∈ O+,

A(r , θ) if (r , θ) ∈ O−.

Bε(r , θ) = [bε
i j (r , θ)]2×2 =

{
B

(
r , θ

ε

)
if (r , θ) ∈ O+,

B(r , θ) if (r , θ) ∈ O−.
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As we defined in the previous section, define Āε = Xt AεX and B̄ε = Xt BεX , where
X is given by (4). As we discussed in the previous section, as ε → 0, it is easy to see
the following strong convergence in L2(OU ),

T ε
(
Āε

) → Ā = [āi j ]2×2 := Xt A(r , τ )X ,

T ε
(
B̄ε

) → B̄ = [b̄i j ]2×2 := Xt B(r , τ )X .

Let ω ⊂⊂ O− be an open set and admissible control set is L2(ω). Consider the
following minimization problem in Oε

Minimize: Jε(u, θ) = 1

2

∫
Oε

Bε∇u∇u + β

2

∫
Oε

χω|θ |2, (12)

where (u, θ) satisfies the following system,

{
−div(Aε∇u) + k(u) + u = f + χωθ in Oε,

Aε∇u · νε = 0 on ∂Oε,

with f ∈ L2(O). One of the aspects is the consideration of the cost functional by a
different matrix B. Even for such a problem in fixed domain, the homogenization anal-
ysis is delicate. Let us recall the following well-known result on semi-linear optimal
control problems (see [15, 55]).

Theorem 3 Let (uε, θε) be the unique solution of (12). Then the optimality system is
given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− div(Aε∇uε) + k(uε) + uε = f + χωθε in Oε,

− div(Aε∇vε) + k′(uε)vε + vε = −div(Bε∇uε) in Oε,

Aε∇uε · νε = 0, Aε∇vε · νε = Bε∇uε on ∂Oε,

θε = −χω

1

β
vε.

(13)

To be precise, vε is the adjoint state. The variational formulation for the optimality
system (13) is as follows: Given f ∈ L2(O), find (uε, vε) ∈ H1(Oε) × H1(Oε) such
that

⎧⎪⎪⎨
⎪⎪⎩

∫
Oε

Aε∇uε∇φ + (k(uε) + uε)φ =
∫
Oε

( f + χωθε)φ,∫
Oε

Aε∇vε∇ψ + (k′(uε)vε + vε)ψ =
∫
Oε

Bε∇uε∇ψ,

(14)

for all (φ,ψ) ∈ H1(Oε) × H1(Oε) with θε = − 1
β
χωvε.
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We want to study the asymptotic behavior of (uε, vε) as ε → 0. Since the oscilla-
tions are in a circular fashion, we rewrite (14) in polar form as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
O+

ε

⎛
⎝ Āε

[ ∂uε

∂r

∂uε

∂θ

] ⎡
⎣ ∂φ

∂r

∂φ
∂θ

⎤
⎦ + (k(uε) + uε)φ

⎞
⎠ +

∫
O−

A∇uε∇φ + (k(uε) + uε)φ

=
∫
Oε

( f + χωθε)φ,

∫
O+

ε

⎛
⎝ Āε

[ ∂vε

∂r

∂vε

∂θ

] ⎡
⎣ ∂ψ

∂r

∂ψ
∂θ

⎤
⎦ + (k′(uε)vε + vε)ψ

⎞
⎠ +

∫
O−

A∇vε∇ψ + (k′(uε)vε + vε)ψ

=
∫
O+

ε

⎛
⎝B̄ε

[ ∂uε

∂r

∂uε

∂θ

] ⎡
⎣ ∂ψ

∂r

∂ψ
∂θ

⎤
⎦

⎞
⎠ +

∫
O−

B∇uε∇ψ

(15)

for all (φ,ψ) ∈ H1(Oε) × H1(Oε) with θε = − 1
β
χωvε.

We will now describe the limit optimal control problem, which, as we will show in
Theorem 5, is the homogenized problem. For the limit problem, the control set is also
L2(ω). Consider the following minimization problem: Minimize

J (u, θ) = 1

2

∫
O+

b0
|x |2 (x · ∇u+) · (x · ∇u+) + 1

2

∫
O−

B∇u−∇u− + β

2

∫
ω

|θ |2,
(16)

where (u, θ) satisfies the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div

(
a0 (x)

|x |2
(
x · ∇u+)

x

)
+ |Y (|x |)|(k(u+) + u+) = |Y (|x |)| f in O+,

−div(A∇u−) + k(u−) + u− = f + θ in O−,

a0 (x)

|x |2
(
x · ∇u+)

x · ν = 0 on �a,

A∇u− · ν = 0 on �b,

u+ = u−,
a0 (x)

|x |2
(
x · ∇u+)

x · ν = A∇u− · ν on �0.

If (u, θ) ∈ V (O) × L2(ω) is the unique optimal solution of the limit minimization
problem, it will satisfy the following optimality system
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div

(
a0 (x)

|x |2
(
x · ∇u+)

x

)
+ |Y (|x |)|(k(u+) + u+) = |Y (|x |)| f in O+,

−div

(
a0 (x)

|x |2
(
x · ∇v+)

x

)
+ |Y (x)|(k′(u+)v+ + v+)

= −div

(
b0 (x)

|x |2
(
x · ∇u+)

x

)
in O+,

−div(A∇u−) + k(u−) + u− = f + θ in O−,

−div(A∇u−) + k′(u−)v− + v− = −div(B∇u−) in O−,

θ = − 1

β
χωv− in O−

together with the boundary conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a0 (x)

|x |2
(
x · ∇u+)

x · ν = 0 on �a,

a0 (x)

|x |2
(
x · ∇v+)

x · ν = b0 (x)

|x |2
(
x · ∇u+)

x · ν on �a,

A∇u− · ν = 0, A∇v− · ν = B∇u− · ν on �b

and the interface conditions on �0⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u+ = u−, v+ = v−,
a0 (x)

|x |2
(
x · ∇u+)

x · ν = A∇u− · ν

a0 (x)

|x |2
(
x · ∇v+)

x · ν − b0 (x)

|x |2
(
x · ∇u+)

x · ν = (A∇v− − B∇u−) · ν.

Here the coefficients a0 and b0 are given by

a0 =
∫
Y (|x |)

(
det Ā

ā22

)
dτ and b0 =

∫
Y (|x |)

(
B̄

[
1

− ā21
ā22

] [
1

− ā21
ā22

])
dτ.

Corresponding weak formulation is: Given f ∈ L2(O) find (u, v) ∈ V (O) × V (O)

such that
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
O+

a0 (x)

|x |2 (x · ∇u) (x · ∇ψ) + |Y (|x |)|(k(u) + u)ψ

+
∫
O−

A∇u∇ψ + (k(u) + u)ψ =
∫
O+

|Y (|x |) f ψ +
∫
O−

( f + χωθ)ψ,∫
O+

a0 (x)

|x |2 (x · ∇u) (x · ∇φ) + |Y (|x |)| (k′(u)v + v
)
φ

+
∫
O−

A∇v∇φ + (k′(u)v + v)φ

=
∫
O+

b0 (x)

|x |2 (x · ∇u) (x · ∇φ) +
∫
O−

B∇u∇φ,

(17)

for all (ψ, φ) ∈ V (O) × V (O) with θ = − 1
β
χωv.

Note that a0 is not influenced by the cost functional, whereas the coefficient b0 in
cost functional is not only depends on the cost of the inhomogenized functional, it
also influenced by the dynamics A.

Using the polar transformation r ∂
∂r u = (x · ∇u), we can write the polar form of

(17) as: Given f ∈ L2(O) find (u, v) ∈ V (O) × V (O) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
O+

a0
∂u

∂r

∂ψ

∂r
+ |Y (r)|(k(u) + u)ψ +

∫
O−

A∇u∇ψ + (k(u) + u)ψ

=
∫
O+

|Y (r) f ψ +
∫
O−

( f + χωθ)ψ,∫
O+

a0
∂v

∂r

∂φ

∂r
+ |Y (r)| (k′(u)v + v

)
φ +

∫
O−

A∇v∇φ + (k′(u)v + v)φ

=
∫
O+

b0
∂u

∂r

∂φ

∂r
+

∫
O−

B∇u∇φ,

(18)

for all (ψ, φ) ∈ V (O) × V (O) with θ = − 1
β
χωv.

Also, the limit minimization problem (16) transform into the following: Minimize

J (u, θ) = 1

2

∫
O+

b0

(
∂u

∂r

)2

+ 1

2

∫
O−

B∇u−∇u− + β

2

∫
ω

|θ |2,

where (u, θ) satisfies the following variational form,

∫
O+

a0
∂u

∂r

∂ψ

∂r
+ |Y (r)|(k(u) + u)ψ +

∫
O−

A∇u∇ψ + (k(u) + u)ψ

=
∫
O+

|Y (r) f ψ +
∫
O−

( f + χωθ)ψ.

The definition of a0 and b0 implies the coerciveness of a0 and b0. We already have
monotonicity of k, then by semi-linear optimal control theory (see [6, 15, 55]), we
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have the existence and uniqueness of the optimal solution (ū, θ̄ ) ∈ V (O) × L2(ω)

and (18) is optimality system.

Theorem 4 Let (uε, vε) and (u, v) be solutions of (15) and (18) respectively. Then as
ε → 0, we have

‖uε − u‖L2(O+
ε ) +

∥∥∥∥∂uε

∂r
− ∂u

∂r

∥∥∥∥
L2(O+

ε )

+
∥∥∥∥∂uε

∂θ
+ āε

21

āε
22

∂u

∂r

∥∥∥∥
L2(O+

ε )

+ ‖uε − u‖H1(O−) −→ 0.

Proof The proof will be the same as we did in Theorem 2. The only extra term is χωθε.
Since ω is compactly contained in�−, and ‖θε‖H1(ω) ≤ C . Hence, it won’t make any
issues in any step of the proof of Theorems 1 and 2. ��
Theorem 5 Let (uε, vε) and (u, v) be solutions of (15) and (18) respectively. Then as
ε → 0, we have the following convergences weakly in L2(O+)

ṽε⇀|Y (r)|v,
∂̃uε

∂r
⇀|Y (r)|∂u

∂r
and

∂̃vε

∂θ
⇀

(
1

2π

∫
Y (r)

1

ā22

(
b̄21 − b̄22

ā21
ā22

))
∂u

∂r
−

(
1

2π

∫
Y (r)

ā21
ā22

)
∂v

∂r
.

And in H1(O−), we have

vε⇀v weakly in H1(O−).

Proof We are dividing the proof into several steps.
Step 1: (Convergences) Since ‖vε‖H1(Oε)

is bounded, using the properties of unfold-

ing operator defined in Sect. 3.2, we have {T ε(vε)},
{
T ε

(
∂vε

∂r

)}
and

{
T ε

(
∂vε

∂θ

)}
are

bounded in L2(�U ). Also {vε} is bounded in H1(O−). Hence fromweak compactness,
there exist v+, Q1, Q2 ∈ L2(OU ) and v− ∈ H1(O−) such that

T εvε⇀v+, T ε

(
∂vε

∂r

)
⇀Q1, T ε

(
∂vε

∂θ

)
⇀Q2 weakly in L2(OU )

and vε −→ v− weakly in H1(O−).

(19)

From the properties of unfolding, it is easy to see that

Q1 = ∂v+

∂r
.

Now to identify Q2, choose φε defined in (9) as test function in the variational from
(17) to get ∫

O+
ε

Aε∇vε∇φε + k′(uε)vεφ
ε + vεφ

ε =
∫
O+

ε

B∇uε∇φε.
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Apply unfolding and pass to the limit as ε → 0 using (8) and (19) to get

∫
OU

Ā

[
∂v+
∂r
Q2

] [
0

φψ ′(τ )

]
=

∫
OU

B̄

[
∂u+
∂r

− ā21
ā22

∂u+
∂r

] [
0

φψ ′(τ )

]
,

which implies

Q2 = 1

ā22

((
b̄21 − b̄22

ā21
ā22

)
∂u

∂r
− ā21

∂v+

∂r

)
. (20)

Now from the same arguments as in Step 2 in the proof of Theorem 1, we can
prove the interface condition v+ = v− on �0. Define v = χO+v+ + χO−v−. Since
∂v
∂r

+ ∈ L2(O+) and v− ∈ H1(O−), the interface condition gives v ∈ V (O). Hence
using the averaging property of the unfolding operator, we can deduce the following
convergence:

ṽε⇀|Y (r)|v,
∂̃uε

∂r
⇀|Y (r)|∂u

∂r
,

∂̃vε

∂θ
⇀

(
1

2π

∫
Y (r)

1

ā22

(
b̄21 − b̄22

ā21
ā22

))
∂u

∂r
−

(
1

2π

∫
Y (r)

a21
ā22

)
∂v

∂r

weakly in L2(�+) and vε⇀v weakly in H1(O−).

Step 2: (Limit problem) Now the remaining part is to prove that v solves the limit
problem. Take ψ ∈ C∞(Ō) as a test function in the variational form (18), apply
unfolding and pass to the limit as ε → 0 to get

∫
OU

Ā

[
∂v
∂r
Q2

]
∇ψ + k′(u)vψ + vψ +

∫
O−

A∇u∇ψ + k′(u)vψ + vψ

=
∫
OU

B̄

[
∂u+
∂r

− ā21
ā22

∂u+
∂r

]
∇ψ +

∫
O−

B̄∇u∇ψ.

Simplify using (20) to get

∫
OU

(
det Ā

ā22

)
∂v

∂r

∂ψ

∂r
+ k′(u)vψ + vψ +

∫
O−

A∇u∇ψ + k′(u)vψ + vψ

=
∫
OU

(
b̄11 − b̄12ā21

ā22
− ā12b21

ā22
+ ā12b22ā21

(ā22)2

)
∂u

∂r

∂ψ

∂r
+

∫
O−

B∇u∇ψ.

Since A and B are symmetric, we have ā12 = ā21 and b̄12 = b̄21. Using matrix
notation, we can simplify the above equation as

∫
OU

(
det Ā

ā22

)
∂v

∂r

∂ψ

∂r
+ k′(u)vψ + vψ +

∫
O−

A∇u∇ψ + k′(u)vψ + vψ
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=
∫
OU

(
B̄

[
1

− ā21
ā22

] [
1

− ā21
ā22

]
∂u

∂r

∂ψ

∂r

)
+

∫
O−

B∇u∇ψ.

Taking average using the properties of the unfolding operator to get

∫
O+

a0
∂v

∂r

∂ψ

∂r
+ |Y (r)| (k′(u)v + v

)
ψ +

∫
O−

A∇u∇ψ + (k′(u)v + vψ)

=
∫
O+

b0
∂u

∂r

∂ψ

∂r
+

∫
O−

B∇u∇ψ,

where the coefficients a0 and b0 are given by

a0 =
∫
Y (r)

(
det Ā

ā22

)
dτ and b0 =

∫
Y (r)

(
B̄

[
1

− ā21
ā22

] [
1

− ā21
ā22

])
dτ.

This completes the proof. ��

3 Homogenization in Domains with Lower Dimensional Oscillations

In this section,wewill discuss thehomogenization result for a semi-linear partial differ-
ential equation (PDE) and its associated optimal control problem in an n-dimensional
domain with oscillating boundary. The oscillations occur in m directions, where m
ranges from 1 to n − 1.

3.1 Domain Description

Let x = (x ′, x ′′) ∈ R
n where x ′ = (x1, x2, . . . xm) and x ′′ = (xm+1, xm+2, . . . xn)

with 1 < m < n. Define

�+ = (0, 1)n, and Y ∗ =
m∏
i=1

(ai , bi ) × (0, 1)n−m

with 0 < ai < bi < 1 for all i = 1, 2, 3, . . . ,m. Let 	 be a connected open subset of
Y ∗ with Lipschitz boundary as our reference cell. Now the upper oscillating part �+

ε

is given by

�+
ε =

{
(x ′, x ′′) ∈ �+ :

({
x ′

ε

}
, x ′′

)
∈ 	

}
,

where
{
x ′
ε

}
denotes the fractional part of x ′

ε
. The lower fixed part is given by

�− = (0, 1)n−1 × (−1, 0).
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Fig. 4 3 Dimensional oscillating domains with m = 1 and m = 2

The oscillating domain �ε and limit domain � are defined as

�ε = int
(
�+

ε ∪ �−
)
and � = int

(
�+ ∪ �−

)
.

Here�+
ε is the upper oscillating part,�− is the lower fixed part,�ε is the oscillating

domain and� is the limit domain. Sample figures are given in Fig. 4. It is important to
note that as per the definition of �ε, the upper part �+

ε exhibits periodic oscillations.
These oscillations involve a periodic arrangement of the reference cell 	, which is
scaled by ε in the x ′ variable and arranged in the x ′ direction with a period of ε. Also
�a, �b are upper and lower boundaries of � and �0 is the interface.

For x ′′ ∈ (0, 1)n−m , define Y (x ′′) = {
y ∈ (0, 1)m : (y, x ′′) ∈ 	

}
where

∣∣Y (x ′′)
∣∣

denote the m dimensional Lebesgue measure of Y (x ′′). We assume the following
properties on 	:

1. The set Y (x ′′) is connected for all x ′′ ∈ (0, 1)n−m ,
2. There exists ρ > 0 such that 0 < ρ ≤ |Y (x ′′)| < 1 for all x ′′ ∈ (0, 1)n−m ,
3. The boundary part ∂	 ∩ (

(0, 1)n−1 × {0}) is connected and have positive n − 1
dimensional Lebesgue measure.

3.2 Periodic Unfolding Operator

We have already introduced the domain �ε with a highly oscillating boundary. First,
we will define the unfolded domain �U in which the unfolded functions are defined.
The unfolded domain �U is defined as follows:

�U = {
(x, y) | x = (x ′, x ′′) ∈ �+, y ∈ Y (x ′′) ⊂ R

m}
.

Let G = {(x ′′, y) | x ′′ ∈ (0, 1)n−m, y ∈ Y (x ′′)}, then, one can write, �U =
(0, 1)m × G. Let φε : �U → �+

ε be defined as φε(x, y) =
(
ε
[
x ′
ε

]
+ εy, x ′′

)
.

The ε− unfolding of a function u : �+
ε → R is the function u ◦ φε : �U → R.
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The operator which maps every function u : �+
ε → R to its ε-unfolding is called the

unfolding operator. We denote the unfolding operator by T ε, that is,

T ε : {u : �+
ε → R} → {T ε(u) : �U → R}

is defined by

T ε(u)(x, y) = u

(
ε

[
x ′

ε

]
+ εy, x ′′

)
.

If V ⊂ R
N containing �+

ε and u is a real-valued function on V , T ε(u) means, that is
T ε acting on the restriction of u to �+

ε . Some important properties of the unfolding
operator are stated below. For each ε > 0,

1. T ε is linear. Further, if u, v : �+
ε → R, then, T ε(uv) = T ε(u)T ε(v).

2. Let u ∈ L1(�+
ε ). then,

∫
�U

T ε(u) =
∫

�+
ε

u.

3. Let u ∈ L2(�+
ε ). Then, T εu ∈ L2(�U ) and ‖T εu‖L2(�U ) = ‖u‖L2(�+

ε ).

4. Let u ∈ H1(�+
ε ). Then, T εu ∈ L2((0, 1)m; H1(G)). Moreover,

∇x ′′T εu = T ε∇x ′′u and ∇yT
εu = εT ε∇x ′u.

5. Let u ∈ L2(�+
ε ). Then, T εu → u strongly in L2(�U ).More generally, let uε → u

strongly in L2(�+). Then, T εuε → u strongly in L2(�U ).

6. Let, for every ε, uε ∈ L2(�+
ε ) be such that T εuε⇀u weakly in L2(�U ). then,

ũε⇀

∫
Y (x ′′)

u(x, y)dy weakly in L2(�+).

7. Let, for every ε > 0, uε ∈ H1(�+
ε ) be such that T εuε⇀u weakly in

L2((0, 1)m; H1(G)). Then,

ũε⇀

∫
Y (x ′′)

u(x, y)dy weakly in L2(�+) and

∇̃x ′′uε⇀

∫
Y (x ′′)

∇x ′′udy weakly in L2(�+)n−m .

where ũε denotes the extension by 0 of uε to �+. This notation is used throughout
the article.
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3.3 Homogenization

Let A = [ai j ]n×n be an n×n symmetric matrix, where the entries ai j ∈ L∞(�). Also
A is uniformly elliptic and bounded in �, that is, there exists α, β > 0 such that

〈A(x)λ, λ〉 ≥ α|λ|2 and |A(x)λ| ≤ β|λ|

for all λ ∈ R
n and a.e in �. Let A1, A2, A3, A4 be sub-matrices of A such that

A =
[
A1 A2
A3 A4

]
,

where the orders of the sub-matrices are as follows:

A1 : m × m, A2 : m × (n − m), A3 : (n − m) × m, A4 : (n − m) × (n − m).

Consider the following problem in �ε:{
−div(A∇uε) + k(uε) + uε = f in �ε,

A∇u · νε = 0 on ∂�ε.

Here f ∈ L2(�) is a given function, νε is the outward unit normal vector, and k is as
defined in the earlier section. The corresponding variational formulation is⎧⎪⎨

⎪⎩
find uε ∈ H1(�ε) such that∫

�ε

A∇uε∇φ + k(uε)φ + uεφ =
∫

�ε

f φ, for all φ ∈ H1(�ε).
(21)

The existence and uniqueness of uε is guaranteed by the Browder–Minty theorem.
We want to study the asymptotic behavior of uε as ε → 0. Let us look at the limit
problem.
Limit problem: Consider the Hilbert space

W (�) =
{
ψ ∈ L2(�) : ∇x ′′ψ ∈ L2(�)n−m, ψ |�− ∈ H1(�−)

}
with inner product

〈φ,ψ〉W (�) = 〈φ,ψ〉L2(�+) + 〈∇x ′′φ,∇x ′′ψ〉L2(�+) + 〈φ,ψ〉H1(�−) .

We define the limit problem as follows: Given f ∈ L2(�), find u ∈ W (�) such that∫
�+

A0∇x ′′u∇x ′′ψ + |Y (x ′′)|k(u)ψ + uψ +
∫

�−
A∇u∇ψ + k(u)ψ + uψ

=
∫

�+
|Y (x ′′)| f ψ +

∫
�−

f ψ,

(22)
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for all ψ ∈ W (�), where

A0(x) = A0(x
′′) = |Y (x ′′)|

([−A3A
−1
1 I

]
A

[−A3A
−1
1 I

]t)

Corresponding strong form is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−divx ′′(A0∇x ′′u+) + |Y (x ′′)|(k(u+) + u+) = |Y (x ′′)| f in �+,

−div(A∇u−) + k(u−) + u− = f in �−,

A0∇x ′′u+ · ν = 0 on �a,

A∇u− · ν = 0 on �b,

u+ = u−, A0∇x ′′u+ · ν = A∇u− · ν on �0.

Since A is symmetric and coercive, and k is monotone, by Browder–Minty theorem,
(22) has a unique solution.

Theorem 6 Let uε, u be the unique solutions of (21) and (22) respectively. Then, we
have the following convergences

ũε⇀u weakly in L2(�),

∇̃x ′′uε⇀∇x ′′u weakly in L2(�+)n−m,

∇̃x ′uε⇀(−A−1
1 A2)∇x ′′u weakly in L2(�+)m,

k̃(uε)⇀|Y (x ′′)|k(u) weakly in L2(�+),

uε −→ u weakly in H1(�−).

Proof We are dividing the proof into several steps.
Step 1: (Convergences) Since ‖uε‖H1(�ε)

≤ ‖ f ‖L2(�), by using the proper-
ties of unfolding operator defined in Sect. 3.2 we have {T ε(uε)} is bounded in
L2((0, 1)m; H1(G)). Also {uε} is bounded in H1(�−). Hence from weak com-
pactness, there exist u+ ∈ L2(�U ), u− ∈ H1(�−), P1 ∈ L2(�U )m and P2 ∈
L2(�U )n−m such that

T εuε⇀u+ weakly in L2(�U ),

T ε(∇x ′uε)⇀P1 weakly in L2(�U )m,

T ε(∇x ′′uε)⇀P2 weakly in L2(�U )n−m,

T ε(k(uε))⇀ζ weakly in L2(�U ),

uε −→ u− weakly in H1(�−).

(23)

From the properties of unfolding, it is easy to see that

P2 = ∇x ′′u+.
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Using the similar properties, we get

∇yT
ε(uε)⇀∇yu weakly in L2(�U )m .

But

∇yT
ε(uε) = εT ε∇x ′u⇀0 weakly in L2(�U ),

which implies u+ is independent of y. Next step is to identify P1. For φ ∈ D(�+)

and ψ ∈ C∞([0, 1]m), define φε = εφ(x)ψ
({ x ′

ε

})
. Then

T ε(φε) = εT ε(φ)ψ(y), T ε(∇x ′′φε) = εT ε (∇x ′′φ) ψ(y) and

T ε
(∇x ′φε

) = εT ε (∇x ′φ) + T ε (φ) ∇yψ(y).
(24)

Use φε as a test function in (21) to get

∫
�+

ε

A∇uε∇φε + k(uε)φε + uεφε =
∫

�+
ε

f φε.

Apply the unfolding operator and pass to the limit using (23) and (24) to get

∫
�U

A

[
P1
P2

] [
φ∇yψ

0

]
= 0.

Since φ and ψ are arbitrary, A1P1 + A2P2 = 0, which implies

P1 = −A−1
1 A2P2 = −A−1

1 A2∇x ′′u+. (25)

Step 2: (Interface Condition) In this step, we are going to prove that u+ = u− on �.
By the continuity of the trace operator and using properties of the unfolding operator,
we get

∫
�

u+φ = lim
ε→0

∫
�

(
T ε (uε)

)∣∣
xn=0 T

ε
0 (φ) = lim

ε→0

∫
�

(
T ε
0 (uε|�+)

)∣∣
xn=0 T

ε
0 (φ)

= lim
ε→0

∫
�

(
T ε
0 (uε|�−)

)∣∣
xn=0 T

ε
0 (φ) =

∫
�

u−φ,

for any φ ∈ C∞
c (�). Hence, we have u+ = u− on �. Define

u = χO+u+ + χO−u−.

Since ∇x ′′u+ ∈ L2(�+)n−m and u− ∈ H1(�−), the interface condition gives u ∈
W (�).
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Step 3: (Identifying ζ ) As in the previous section, we need to identify ζ . The com-
putation is delicate because it involves higher order matrices, and we are using the
Browder–Minty method to perform it. Let φ ∈ C1(�̄). Consider the integral

Iε =
∫

�+
ε

A

[
∇x ′uε −

(
−A−1

1 A2

)
∇x ′′u

∇x ′′uε − ∇x ′′φ

] [
∇x ′uε −

(
−A−1

1 A2

)
∇x ′′u

∇x ′′uε − ∇x ′′φ

]

+
∫

�+
ε

(k(uε) − k(φ)(uε − φ)) + (uε − φ)2

+
∫

�−
A(∇uε − ∇φ)(∇uε − ∇φ) + (k(uε) − k(φ)(uε − φ)) + (uε − φ)2.

Expand and rearrange to get

Iε =
∫

�ε

A∇uε∇uε + k(uε)uε + u2ε +
∫

�+
ε

−A

[∇x ′uε

∇x ′′uε

] [−A−1
1 A2∇x ′′u
∇x ′′φ

]

+
∫

�+
ε

−A

[−A−1
1 A2∇x ′′u
∇x ′′φ

] [∇x ′uε

∇x ′′uε

]

+
∫

�+
ε

A

[−A−1
1 A2∇x ′′u
∇x ′′φ

] [−A−1
1 A2∇x ′′u
∇x ′′φ

]

+
∫

�+
ε

−k(uε)φ − k(φ)uε + k(φ)φ − 2uεφ + φ2

+
∫

�−
−A∇uε∇φ − A∇φ∇uε + A∇φ∇φ

+
∫

�−
−k(uε)φ − k(φ)uε + k(φ)φ − 2uεφ + φ2.

Now we have to pass the limit as ε → 0. Using (23) pass to the limit in the variational
form (21) to get

∫
�U

f φ +
∫

�−
f φ =

∫
�U

A

[−A−1
1 A2∇x ′′u
∇x ′′u

]
∇φ + ζφ + uφ +

∫
�−

A∇u∇φ + k(u)φ + uφ

=
∫

�U

(
A4 − A3A

−1
1 A2

)
∇x ′′u∇x ′′φ + ζφ + uφ

+
∫

�−
A∇u∇φ + k(u)φ + uφ.

By density of C1(�̄) in W (�), the above equality holds for all φ ∈ W (�). Put φ = u
to get

∫
�U

f u +
∫

�−
f u =

∫
�U

(
A4 − A3A

−1
1 A2

)
∇x ′′u∇x ′′u + ζu + u2

+
∫

�−
A∇u∇u + k(u)u + u2
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=
∫

�U

A

[−A−1
1 A2∇x ′′u
∇x ′′u

] [−A−1
1 A2∇x ′′u
∇x ′′u

]
+ ζu + u2

+
∫

�−
A∇u∇u + k(u)u + u2.

On the other hand, using the energy equality we have

lim
ε→0

∫
�ε

A∇uε∇uε + k(uε)uε + u2ε = lim
ε→0

∫
�ε

f uε =
∫

�U

f u +
∫

�−
f u

=
∫

�U

A

[−A−1
1 A2∇x ′′u
∇x ′′u

] [−A−1
1 A2∇x ′′u
∇x ′′u

]
+ ζu + u2

+
∫

�−
A∇u∇u + k(u)u + u2.

(26)

Now pass to the limit as ε → 0 in Iε using (23) and (26) to get

lim
ε→0

Iε =
∫

�U

A

[−A−1
1 A2∇x ′′u
∇x ′′u

] [−A−1
1 A2∇x ′′u
∇x ′′u

]

−
∫

�U

A

[−A−1
1 A2∇x ′′u
∇x ′′u

] [−A−1
1 A2∇x ′′u
∇x ′′φ

]

−
∫

�U

A

[−A−1
1 A2∇x ′′u
∇x ′′φ

] [−A−1
1 A2∇x ′′u
∇x ′′u

]

+
∫

�U

A

[−A−1
1 A2∇x ′′u
∇x ′′φ

] [−A−1
1 A2∇x ′′u
∇x ′′φ

]

+
∫

�U

ζu − ζφ − k(φ)u + k(φ)φ + u2 − 2uφ + φ2

+
∫

�−
A∇u∇u − A∇u∇φ − A∇φ∇u + A∇φ∇φ

+
∫

�−
k(u)u − k(u)φ − k(φ)u + k(φ)φ + u2 − 2uφ + φ2.

By properly factoring, we can obtain

lim
ε→0

Iε =
∫

�U

A

[−A−1
1 A2∇x ′′u + A−1

1 A2∇x ′′u
∇x ′′u − ∇x ′′φ

] [−A−1
1 A2∇x ′′u + A−1

1 A2∇x ′′u
∇x ′′u − ∇x ′′φ

]

+
∫

�U

(ζ − k(u))(u − φ) + (u − φ)2

+
∫

�−
A(∇u − ∇φ)(∇u − ∇φ) + (k(u) − k(φ))(u − φ) + (u − φ)2

=
∫

�U

A4(∇x ′′u − ∇x ′′φ)(∇x ′′u − ∇x ′′φ) + (ζ − k(φ))(u − φ) + (u − φ)2
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+
∫

�−
A(∇u − ∇φ)(∇u − ∇φ) + (k(u) − k(φ))(u − φ) + (u − φ)2.

From the monotonicity of k, we have I ε ≥ 0 for all ε, which implies

lim
ε→0

Iε =
∫

�U

A4(∇x ′′u − ∇x ′′φ)(∇x ′′u − ∇x ′′φ) + (ζ − k(φ))(u − φ) + (u − φ)2

+
∫

�−
A(∇u − ∇φ)(∇u − ∇φ) + (k(u) − k(φ))(u − φ) + (u − φ)2 ≥ 0.

Choose φ = u + λψ,ψ ∈ C∞ (
�

)
, λ > 0 to get

∫
�U

λA4∇x ′′ψ∇x ′′ψ + (ζ − k(φ − λψ))ψ + λψ2

+
∫

�−
λA∇ψ∇ψ + (k(u) − k(u − λψ))ψ + λψ2 ≥ 0.

As λ → 0, ∫
�U

(ζ − k(u)) ψ ≥ 0 for all ψ ∈ C1 (
�

)
.

Hence, ∫
Y (x ′′)

ζdy = |Y (x ′′)|k(u). (27)

We have evaluated all the unknowns in (23). Hence using properties of the unfolding
operator, we can deduce the following convergence from (23) using (25),(27), and
interface condition.

ũε⇀|Y (x ′′)|u weakly in L2(�),

∇̃x ′′uε⇀|Y (x ′′)|∇x ′′u weakly in L2(�+)n−m,

∇̃x ′uε⇀|Y (x ′′)|(−A−1
1 A2)∇x ′′u weakly in L2(�+)m,

k̃(uε)⇀|Y (x ′′)|k(u) weakly in L2(�+),

uε −→ u weakly in H1(�−).

Hence we got the required convergence. Now we need to prove that u is actually the
solution of the limit problem (22).
Step 4: (Limit Problem) Use ψ ∈ C∞(�̄) as test function in (21). Apply unfolding
operator and passing to the limit using (23), we obtain

∫
�U

A

[
P1
P2

]
∇ψ + ζψ + uψ +

∫
�−

A∇u∇ψ + k(u)ψ + uψ =
∫

�U

f ψ +
∫

�−
f ψ.
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Simplify using values of (25),

∫
�U

(A3P1 + A4P2) ∇x ′′ψ + ζψ + uψ +
∫

�−
A∇u∇ψ + k(u)ψ + uψ

=
∫

�U

f ψ +
∫

�−
f ψ.

Substitute values of P1 and P2,∫
�U

(
−A3A

−1
1 A2 + A4

)
∇x ′′u∇x ′′ψ + ζψ + uψ +

∫
�−

A∇u∇ψ + k(u)ψ + uψ

=
∫

�U

f ψ +
∫

�−
f ψ.

Average out using (27) and properties of the unfolding operator to get

∫
�+

A0∇x ′′u∇x ′′ψ + |Y (x ′′)|k(u)ψ + uψ +
∫

�−
A∇u∇ψ + k(u)ψ + uψ

=
∫

�+
|Y (x ′′)| f ψ +

∫
�−

f ψ,

where the coefficient matrix A0 is given by

A0 =
∫
Y (x ′′)

(
−A3A

−1
1 A2 + A4

)
dy = |Y (x")|

(
−A3A

−1
1 A2 + A4

)
.

To prove the existence and uniqueness of solution for the variational form, a major
challenge is to show that A0 is coercive. Interestingly, we could obtain a different
matrix expression for A0 which directly implies its coercivity due to the coercivity of
A. Using the symmetric property of A we can rewrite A0 as

A0 = |Y (x ′′)|
([−A3A

−1
1 I

]
A

[−A3A
−1
1 I

]t)
.

By density of C∞(�̄), in W (�), we get that u satisfies the limit problem (22).
Hence the proof of Theorem 6 is done. ��

We will prove the corresponding results in the following theorem.

Theorem 7 (Corrector results) Let uε, u be the unique solutions of (21) and (22)
respectively. Then, we have the following convergences
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ũε − χ�εu −→ 0 strongly in L2(�),

∇̃x ′′uε − χ�ε∇x ′′u −→ 0 strongly in L2(�+)n−m,

∇̃x ′uε − χ�ε

(
−A−1

1 A2

)
∇x ′′u −→ 0 strongly in L2(�+)m,

uε − u −→ 0 strongly in H1(�−).

Proof Consider

Jε =
∫

�+
ε

A

[
∇x ′uε −

(
−A−1

1 A2∇x ′′u
)

∇x ′′uε − ∇x ′′u

] [
∇x ′uε −

(
−A−1

1 A2∇x ′′u
)

∇x ′′uε − ∇x ′′u

]

+
∫

�+
ε

(k(uε) − k(u)) (uε − u) + (uε − u)2

+
∫

�−
A(∇uε − ∇u)(∇uε − ∇u) + (k(uε) − k(u)) (uε − u) + (uε − u)2.

Expand and rearrange to get

Jε = J 1ε + J 2ε + J 3ε + J 4ε ,

where

J 1ε =
∫

�ε

A∇uε∇uε + k(uε)uε + u2ε,

J 2ε =
∫

�+
ε

−A

[∇x ′uε

∇x ′′uε

] [−A−1
1 A2∇x ′′u
∇x ′′u

]
+

∫
�+

ε

−A

[−A−1
1 A2∇x ′′u
∇x ′′u

] [∇x ′uε

∇x ′′uε

]

+
∫

�+
ε

A

[−A−1
1 A2∇x ′′u
∇x ′′u

] [−A−1
1 A2∇x ′′u
∇x ′′u

]
,

J 3ε =
∫

�+
ε

−k(uε)u − k(u)uε + k(u)u − 2uεu + u2,

J 4ε =
∫

�−
−A∇uε∇u − A∇u∇uε + A∇u∇u

+
∫

�−
−k(uε)u − k(u)uε + k(u)u − 2uεu + u2.

On applying the unfolding operator and passing to the limit as ε → 0, we get

lim
ε→0

J 2ε =
∫

�U

(
A3A

−1
1 A2 − A4

)
∇x ′′u∇x ′′u

=
∫

�+
−A0∇x ′′u∇x ′′u,

lim
ε→0

J 3ε =
∫

�U

−ζu − u2 =
∫

�+
−|Y (x ′′)|

(
k(u)u + u2

)
,
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lim
ε→0

J 4ε =
∫

�−
−A∇u∇u − k(u)u − u2,

lim
ε→0

J 1ε = lim
ε→0

∫
�ε

A∇uε∇uε + k(uε)uε + u2ε

= lim
ε→0

∫
�ε

f uε =
∫

�U

f u +
∫

�−
f u

=
∫

�+
A0∇x ′′u∇x ′′u + |Y (x ′′)|

(
k(u)u + u2

)
+

∫
�−

A∇u∇u + k(u)u + u2

= −
(
lim
ε→0

J ε
2 + lim

ε→0
J ε
3 + lim

ε→0
J ε
4

)
.

This implies that

lim
ε→0

Iε = 0.

Then coercivity of A and monotonicity of k completes the proof of Theorem 7. ��

3.4 Optimal Control

Define A as in Sect. 3.3. Also define

B =
[
B1 B2
B3 B4

]

in a similar way as we have defined A. Let ω ⊂⊂ �− be an open set and admissible
control set is L2(ω). Now consider the following optimal control problem: Minimize

Jε(u, θ) = 1

2

∫
�ε

B∇u∇u + β

2

∫
�ε

χω|θ |2, (28)

where (u, θ) satisfies the following system

{
−div(A∇u) + k(u) + u = f + χωθ in �ε,

A∇u · νε = 0 on ∂�ε,

where f ∈ L2(�). From the semi-linear optimal control theory, we have the existence
and uniqueness of the optimal solution (uε, θε) ∈ H1(�ε) × L2(ω) (see [6, 15, 55]).
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We aim to study the asymptotic behavior of (uε, θε) as ε → 0. Let (uε, θε) be the
unique solution of (28). Then (uε, vε) will satisfy the following optimality system.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− div(A∇uε) + k(uε) + uε = f + χωθε in �ε,

− div(A∇vε) + k′(uε)vε + vε = −div(B∇uε) in �ε,

A∇uε · νε = 0, A∇vε · νε = B∇uε on ∂�ε,

θε = 1

β
vε.

Corresponding variational form is: Given f ∈ L2(�), find (uε, vε) ∈ H1(�ε) ×
H1(�ε) such that

⎧⎪⎪⎨
⎪⎪⎩

∫
�ε

A∇uε∇ψ + (k(uε) + uε)ψ =
∫

�ε

( f + χωθε)ψ,∫
�ε

A∇vε∇φ + (k′(uε)vε + vε)φ =
∫

�ε

B∇uε∇φ,

(29)

for all (ψ, φ) ∈ H1(�ε) × H1(�ε) with

θε = − 1

β
χωvε.

We want to study the asymptotic behavior of (uε, vε) as ε → 0. We now describe
the limit optimal control problem which we will be the homogenized problem (The-
orem 9).

For the limit optimal control problem, the admissible control set is again L2(ω).
The limit optimal control problem is given as follows: Minimize

J (u, θ) = 1

2

∫
�+

B0∇x ′′u+∇x ′′u+ + 1

2

∫
�−

B∇u−∇u− + 1

2

∫
�−

χω|θ |2,

where (u, θ) satisfies the following system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−divx ′′(A0∇x ′′u+) + |Y (x ′′)|k(u+) + u+ = |Y (x ′′)| f in �+,

−div(A∇u−) + k(u−) + u− = f + χωθ in �−,

A0∇x ′′u+ · ν = 0 on �a,

A∇u− · ν = 0 on �b,

A0∇x ′′u+ · ν − A∇u− · ν = 0 on �0.

where the coefficient matrix A0 and B0 are given by

A0 = ∣∣Y (x ′′)
∣∣ ([−A3A

−1
1 I

]
A

[−A3A
−1
1 I

]t)
and

B0 = ∣∣Y (x ′′)
∣∣ ([−A3A

−1
1 I

]
B

[−A3A
−1
1 I

]t)
.
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The definition A0 and B0 implies the coerciveness of A0 and B0. We already have
monotonicity of k, then by semi-linear optimal control theory, we have the existence
and uniqueness of the optimal solution (ū, θ) ∈ W (�) × L2(ω) (see [6, 15]).

Again from the well-known theory for semi-linear optimal control problems (see
[15, 55]) we can write the optimality system corresponding to the limit optimal control
problem as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−divx ′′(A0∇x ′′u+) + |Y (x ′′)|k(u+) + u+ = |Y (x ′′)| f in �+,

−div(A0∇x ′′v+) + k′(u+)v+ + v+ = −div(B0∇x ′′u+) in �+,

−div(A∇u−) + k(u−) + u− = f + χωθ in �−,

−div(A∇u−) + k′(u−)v− + v− = −div(B∇u) in �−,

θ = − 1

β
χωv−,

together with the boundary conditions

{
A0∇x ′′u+ · ν = 0, A0∇x ′′v+ · ν = B0∇x ′′u+ · ν on �a,

A∇u− · ν = 0, A∇v− · ν = B∇u− · ν on �b,

and interface conditions on �0{
u+ = u−, v+ = v−, A0∇x ′′u+ · ν = A∇u− · ν,

(A0∇x ′′v+ − B0∇x ′′u+) · ν = (A∇v− − B∇u−) · ν.

Corresponding weak formulation is: Given f ∈ L2(�) find (u, v) ∈ W (�) × W (�)

such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�+

A0∇x ′′u∇x ′′ψ + |Y (x ′′)|k(u)ψ + uψ +
∫

�−
A∇u∇ψ + k(u)ψ + uψ

=
∫

�+
|Y (x ′′)|( f + θ)ψ +

∫
�−

f ψ,∫
�+

A0∇x ′′v∇x ′′φ + |Y (x ′′)| (k′(u)v + v
)
φ +

∫
�−

A∇v∇ψ + (k′(u)v + v)φ

=
∫

�+
B0∇x ′′u∇x ′′ψ +

∫
�−

B∇u∇ψ,

(30)

for all (ψ, φ) ∈ W (�) × W (�) with θ = − 1
β
χωv.

The next two theorems gives us that the system defined by (30) is the homogenized
limit system.

Theorem 8 Let (uε, vε) and (u, v) be solutions of (29) and (30) respectively. Then as
ε → 0, we have the following strong convergences

ũε − χ�εu −→ 0 strongly in L2(�),
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∇̃x ′′uε − χ�ε∇x ′′u −→ 0 strongly in L2(�+)n−m,

∇̃x ′uε − χ�ε

(
−A−1

1 A2

)
∇x ′′u −→ 0 strongly in L2(�+)m,

uε − u −→ 0 strongly in H1(�−).

Proof The proof will be the same as we did in last subsection. The only extra term is
χωθε. Since ω is compactly contained in �−, and ‖θε‖H1(ω) ≤ C . Hence, it won’t
make any issues in any step of the proof we did in the case of homogenization. ��
Theorem 9 Let (uε, vε) and (u, v) be solutions of (29) and (30) respectively. Then we
have the following convergences:

ṽε⇀v weakly in L2(�),

∇̃x ′′vε⇀∇x ′′v weakly in L2(�+)n−m,

∇̃x ′vε⇀A−1
1

((
−B1A

−1
1 A2 + B2

)
∇x ′′u − A2∇x ′′v

)
weakly in L2(�+)m,

k̃(vε)⇀|Y (x ′′)|k(v) weakly in L2(�+),

vε −→ v weakly in H1(�−).

Proof Step 1: (Convergences) Since ‖vε‖H1(�ε)
is bounded, using the proper-

ties of unfolding operator defined in Sect. 3.2 we have {T ε(vε)} is bounded in
L2((0, 1)m; H1(G)).Also {vε} is bounded in H1(�−).Hence fromweak compactness,
there exist v+ ∈ L2(�U ), v− ∈ H1(�−), Q1 ∈ L2(�U )m and Q2 ∈ L2(�U )n−m

such that

T ε(vε)⇀v+ weakly in L2(�U ),

T ε(∇x ′vε)⇀Q1 weakly in L2(�U )m,

T ε(∇x ′′vε)⇀Q2 weakly in L2(�U )n−m,

vε⇀v− weakly in H1(�−).

(31)

From the properties of unfolding, it is easy to see that

Q2 = ∇x ′′v+.

Now to identify Q2 choose φε defined in (24) as test function in the variational from
(29) to get

∫
�+

ε

A∇vε∇ψ + k′(uε)vεψ + vεψ =
∫

�+
ε

B∇uε∇ψ.

Apply unfolding and pass to the limit as ε → 0 using (23) and (31) to get

∫
�U

(A1Q1 + A2Q2) (∇yψ)φ =
∫

�U

(B1(−P1u + B2P2)(∇yψ)φ
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which implies

A1Q1 + A2Q2 = B1P1 + B2P2. (32)

Simplify using values of P1, P2 and Q2 to get

Q1 = A−1
1

((
−B1A

−1
1 A2 + B2

)
∇x ′′u − A2∇x ′′v

)
.

Then using the averaging property of unfolding operator in (31), we will get the
required convergences. Now it is enough to show that (u, v) satisfies (30).Take ψ ∈
C∞(�̄) as a test function in the variational form (29), apply unfolding and pass to the
limit as ε → 0 to get∫

�U

A

[
Q1
Q2

]
∇ψ + k′(u)vψ + vψ +

∫
�−

A∇u∇ψ + k′(u)vψ + vψ

=
∫

�U

B

[
P1
P2

]
∇ψ +

∫
�−

B∇u∇ψ.

Simplify using (32) to get∫
�U

(A3Q1 + A4Q2) ∇x ′′ψ + k′(u)vψ + vψ +
∫

�−
A∇u∇ψ + k′(u)vψ + vψ

=
∫

�U

(B3P1 + B4P2)∇x ′′ψ +
∫

�−
B∇u∇ψ.

Simplify using values of P1, P2 and Q2 to get∫
�U

(
A4 − A3A

−1
1 A2

)
∇x ′′v∇x ′′ψ + k′(u)vψ + vψ +

∫
�−

A∇u∇ψ + k′(u)vψ + vψ

=
∫

�U

(
−B3A

−1
1 A2 + A3A

−1
1 B1A

−1
1 A2 + B4 − A3A

−1
1 B2

)
∇x ′′u∇x ′′ψ

+
∫

�−
B∇u∇ψ.

Taking the average using the properties of the unfolding operator, we get

∫
�+

A0∇x ′′v∇x ′′ψ + |Y (x ′′)| (k′(u)vψ + vψ
) +

∫
�−

A∇u∇ψ + k′(u)vψ + vψ

=
∫

�+
B0∇x ′′u∇x ′′ψ +

∫
�−

B∇u∇ψ,

where the coefficients A0 and B0 are given by

A0 = ∣∣Y (x ′′)
∣∣ (

A4 − A3A
−1
1 A2

)
,

B0 = ∣∣Y (x ′′)
∣∣ (

−B3A
−1
1 A2 + A3A

−1
1 B1A

−1
1 A2 + B4 − A3A

−1
1 B2

)
.
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Again as in the previous subsection to prove the existence and uniqueness of a solution
for the variational form, a major challenge is to show that A0 and B0 is coercive. Since
we already got a nice form for A0, we have to find a similar form form for B0 also.
Fortunately, we obtained a matrix expression for B0 also, which directly implies its
coercivity due to the coercivity of A0 and B0. Following are the nicematrix expressions
for A0 and B0

A0 = ∣∣Y (x ′′)
∣∣ ([−A3A

−1
1 I

]
A

[−A3A
−1
1 I

]t)
and

B0 = ∣∣Y (x ′′)
∣∣ ([−A3A

−1
1 I

]
B

[−A3A
−1
1 I

]t)
.

By density of C∞(�̄) in W (�), we v satisfies the limit problem (30) and hence the
proof is completed. ��
Remark 1 Here we have considered the PDE with the principal part as a divergence
form with non-oscillating matrix coefficients. This is only to make the presentation
simpler.We can carry out all the results in anyfinite dimensionwithmore general linear

elliptic PDE with principal part as div
(
A

(
x, x ′

ε

)
· ∇

)
where A(x, y′) are uniformly

bounded and elliptic n × n in � × Y matrices. For this, we have to use the Lemma
7.5, and 7.6, proven in one of our recent articles [45]. As in [45], all the results can be

reproduced with cost functional-coefficient as B
(
x, x ′

ε

)
with minor modifications.

Remark 2 In this article,we have focused on applying control away from the oscillating
part of the system. There are technical challenges when attempting to apply control
directly to the oscillating part, due to the non-linear nature of the system. However,
in our previous work on linear equations, we were able to apply control anywhere,
including the oscillating part. We are currently working on finding a way to overcome
the technical difficulties associated with applying control to the oscillating part in the
non-linear case.

4 Conclusion

In conclusion, this article presents a study of the homogenization of optimal control
problems governed by semi-linear elliptic PDEs with matrix coefficients in oscillating
domains of two different types:
Domain with oscillations in a circular fashion: In the homogenization process,
we arrived at a limit problem that is independent of ε. The limit problem consists
of derivatives in both x1 and x2 directions in such a way that the derivative in the
angular direction averages out. In the homogenization of optimal control problems,
the coefficient in the limit optimal control problem not only depends on the cost of
unhomogenized functional but it is also influenced by the dynamics.
Domains with oscillations in lesser dimensions: In the homogenization process,
we arrived at a limit problem that is independent of ε, and the derivative involved
in the PDE in x ′′ direction, where the domain is not oscillating. The derivatives in
the oscillating directions x ′ vanishes from the limit problem. In the homogenization
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of optimal control problems, the coefficient in the limit optimal control problem not
only depends on the cost of unhomogenized functional but it is also influenced by the
dynamics.

The paper involves quite a bit of technicalities due to the presence of the non-linear
term. The major issue was the identification of the limit of the non-linear term, where
we used the Browder–Minty method, which involves long computations. In general,
homogenizing problems in oscillating domains involves lengthy calculations and the
non-linear aspect further adds to the complexity. Although the initially considered
inhomogenized problems are without any interface conditions, the highly oscillating
nature of the boundary led us to limit problems with interface conditions.
Possible directions for future research: We concentrate on implementing control
away from the oscillating part of the domain due to the technical complications arising
from the non-linear term. It is a fascinating research question to apply control on the
oscillating part and perform homogenization with semi-linear PDE. However, this
question remains unsolved due to the existing technical difficulties.

Also, in the whole article, we use Hilbert space techniques to analyze because the
source term is from L2 space. It is interesting to do the homogenization problem with
L1 source term, which is currently open.
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